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Introduction

The APS beamline front ends are designed to be
standard, one type for all planned insertion devices (IDs)
and another type for all bending magnets (BMs). Depending on
the ID source power and user needs, the ID front ends can be
of windowless operation {with the use of differential pumps)
or of conventional window operation. Figures 1,2, and 3 are
drawings of the front end layout for (1) a bending magnet
front end, (2) an insertion device front end and (3) a
windowless insertion device front end showing the placement
of pumps, valves, and required front end hardware. A fast
valve is used to protect the storage ring vacuum from the
shock wave associated with a massive vacuum breach in the
downstream front end or in the downstream beam line proper.
This valve is preceded by an all-metal gate valve, which
will start to close at the same time the fast wvalve is
triggered. This will isolate the upstream front end and the
storage ring vacuum from any further pressure increase
caused by downstream vacuum breaches.

Because all the front ends are directly coupled to the
storage ring vacuum system, the upstream front end vacuum
requirements equal those of the storage ring. This requires

a pressure of less than 1 nTorr with beam on. Achieving UHV



vacuum conditions requires that hydrocarbons and
contaminants be kept to a minimum. The pumping system will
consist of portable dry (oil-free) mechanical pumps backing
turbomolecular pumps for roughing the system down and
permanently mounted ion pumps with nonevaporable getter
capabilities providing the final UHV pumping. Information on
UHV pressure will be monitored through the use of nude UHV
ion gauges located at upstream and downstream front end
locations, and higher pressure information will be obtained
through the use of convectron gauges located between the
fast and slow valve and on the portable roughing carts. Mass
spectra will also be monitored at the upstream end of the

front ends, where an RGA will be installed.

The design of the front end vacuum has utilized the
finite element analysis computer program developed at
Argonne to model and optimize the front end vacuum
characteristics. The thermal desorption used for these
vacuum calculations is 3 x 10712 Tl/sec/cmz, and the
synchrotron-radiation~induced desorption coefficient is
1 x 107° molecules/photon after 500 hours of operation with
100 ma circulating positron current in the storage ring. The
above thermal desorption value is a standard number used for
clean, baked stainless steel. (1) The desorption coefficient

(1 x 1070 mol/photon) is a reasonably attainable value as
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agreed upon at an international workshop held at Cornell

ij_versj_ty (2) The selection and
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and bakeout and monitoring equipment are based on the
results of the computer analysis.

Figure 1.1 is a bending magnet front end vacuum profile
generated by the computer vacuum program depicting 100% of
the beam interacting with fixed mask 1. This condition could
exist only if gross beam missteering were to occur in the
storage ring. It is a worst-case scenario that would be of
very short duration because the beam diagnostic feedback
system would dump the stored beam.

Figure 1.2 is a bending magnet front end vacuum profile
with 10% of the beam interacting with fixed mask 1 and 90%
of the beam stopped by shutter 1. This would be the
condition of a long~term shutdown of a bending magnet beam-
line.

Figure 1.3 is a bending magnet front end vacuum profile
with 10% of the beam interacting with fixed mask 1, 10% of
the beam interacting with fixed mask 2, and 80% of the beam
stopped by shutter 2. This would be the condition when users
would enter a hutch or beamline area requiring beam to be
shut down during entry.

Figure 1.4 is a bending magnet front end vacuum profile
with 10% of the beam interacting with fixed mask 1, 10% of
the beam interacting with fixed mask 2, 15% interacting with
the filters, 10% interacting with the window assembly, and

the remainder transported downstream to the user.
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From the above (4) examples 1t can be observed that the
necessary vacuum requirements are met in all cases with the
exception of that shown in Figure 1.1 in which the upstream
vacuum could exceed 1 x 1072 Torr for a short time until the
beam position feedback system either corrects the
missteering or shuts down the beam.

Figure 2.1 is an insertion device front end vacuum
profile with 100% of the beam interacting with fixed mask 1.
This condition could exist only if gross beam missteering
were to occur in the storage ring. It is a worst-case
scenario that would be of very short duration because the
beam diagnostic feedback system would dump the stored beam.

Figure 2.2 is an insertion device front end vacuum
profile with 1% of the beam interacting with fixed mask 1
and 99% of the beam stopped by shutter 1. This would be the
condition of a long-term shutdown of an insertion device
front end.

Figure 2.3 is an insertion device front end vacuum
profile with 1% of the beam interacting with fixed mask 1,
1% interacting with fixed mask 2, and 98% of the beam
stopped on shutter 2. This would be the condition during
which users would enter hutches or other areas requiring
beam to be off.

Figure 2.4 is an insertion device front end vacuum
profile with 1% of the beam interacting with each of fixed

masks 1 and 2, 3% interacting with shutter 2, 5% interacting



with the filters, 1.5% interacting with the exit window, and

From the above (4) examples it can be observed that the
necessary vacuum requirements are met in all cases with the
exception of that shown in Figure 2.1 in which the upstream
vacuum could exceed 1 x 1072 Torr for a short time until the
beam position feedback system either corrects the
missteering or shuts down the beam.

Figure 3.1 is a windowless insertion device front end
vacuum profile with the same conditions as in Figure 2.1
above.

Figure 3.2 is a windowless insertion device front end
vacuum profile with the same conditions as in Figure 2.2
above.

Figure 3.3 is a windowless insertion device front end
vacuum profile with conditions equal to those in Figure 2.3
above.

Figure 3.4 is a windowless insertion device front end
vacuum profile with conditions similar to those in Figure
2.4 above. The difference is due to the differential pump
negating the need for filters and the window assemblies. The
beam interaction with these components is eliminated.

From the above (4) examples it can be observed that the
necessary vacuum requirements are met in all cases with the
exception of that shown in Figure 3.1 in which the upstream

vacuum could exceed 1 x 10"9 Torr for a short time until the



beam position feedback system either corrects the
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Figure 4 is a diagram of the standard differential pump
designed for APS operation. Using apertures of 10mm x
78mm, 12mm x 78mm and 14mm x 78mm (as shown in the drawing),
pressure differentials of greater than two orders of
magnitude have been obtained. An added benefit has been the
time delay observed when producing a high pressure burst at
the downstream end of the pump and measuring the time before
the pressure increase is detected on the upstream end of the
pump. Figure 5 is a plot showing this measured delay when
allowing the downstream pressure to rise rapidly from 2.4 x
1077 Torr to 1 x 1074 Torr. A delay in excess of 100 msec is
evident. Other delays are engineered into the front ends in
the form of small apertures on each side of large volume
chambers. Figures 6 and 7 show the aperture sizes and
locations for an insertion device front end and a front end
specicifically for undulators, respectively. Formal delay
line tubes are included in the bending magnet front end as
well as in the windowless insertion device front end. No
space is available for a formal delay line in the

conventional window-type insertion device front end.



All front ends are equipped with valving and wvacuum
sensing to protect the storage ring vacuum in the event of a
severe vacuum breach in a beamline. Figure 8 is a diagram
showing the logic and set points used to control three
valves (SV, slow valve), (FV, fast valve) and (EV, exit
valve)to protect and isoclate various sections of the front-
end and the storage ring. In order for the EV to open, the
pressure downstream of the differential pump must be < 1 x
1076 Torr, and the pressure upstream of the differential
pump nmust be < 1 x 1078 Torr, and the pressure in the safety
shutter chamber must be < 6 x 1072 Torr. Any one of the
three pressures exceeding their set point will cause the EV
to close or prevent it from opening. If the pressure
upstream of the EV reaches 1 x 10”8 Torr or higher, the 3V
will close as will shutter 1 to prevent beam from damaging
the valve. If the pressure upstream of the EV reaches or
exceeds 1 x 10”5 Torr, the SV and the FV will close and beam
in the storage ring will be dumped. This will happen only if

a serious pressure problem exists in the beamline.

Cleaning Methods and Agents

New cleaning techniques have been investigated to
comply with ES&¢H and to reduce cleaning waste and residue,

disposal of which is very expensive. One product tested is



Citronox, which is a citric-acid-based product and can be
disposed of by flushing down the drain. This product has
been used in a 5% solution with DI water at 55 deg. C to
clean copper and glidcop samples. A 15-minute bath in
Citronox has cleaned these materials but has left a brownish
oxide layer, which was removed by scrubbing with scotchbrite
pads with trichlor, acetone, and methanol. Glidcop processed
in this manner has been installed in a vacuum system and
pumped into the mid 10711 rorr range with no undesirable

traces detected on an RGA.

A novel method of cleaning using supercritical CO, has

been examined with some encouraging results. (3)

Supercritical cleaning relates to the properties of gas
liquification. If a pure gas is compressed below a "critical
temperature, " liquification occurs. At temperatures above
the critical temperature no liquification is possible
regardless of the pressure applied. Figure 9 is a phase
diagram of a typical supercritical fluid. For CO,, the
critical temperature is 31 deg. C and the critical pressure
is 1073 psi. As the pressure 1is increased, the gas density
increases to near-liquid density at which point the
supercritical fluid displays good solubilizing properties.
The cleaning effectiveness of supercritical CO, is dependent
on the temperature, pressure, flow rate, turbulence, and
time left in the media. The bottom diagram in Figure 9 is a

schematic of a supercritical cleaning system. Samples of



stainless steel, copper, and glidcop were cleaned with this

g in trichlor

method, and the results compared with cleanin 1 trichlor ,

acetone, and methanol using ultrasonics. Figure 10 is a
sample ESCA plot, which was the method used to analyze the
results. Figure 11 is a chart of the results showing that
the chemical cleaning results are somewhat better than the
supercritical results. During the supercritical cleaning,
the flow rate was so low that no turbulence was present. It
is believed that increasing the flow rate and adding

ultrasonics or agitation could improve the effectiveness of

this cleaning method. Testing will continue.

R&D Completed

Testing has been completed on a 4" fast valve of the
type to be used to protect the storage ring vacuum from
-vacuum breaches in a beamline or downstream front end. The
top diagram of Figure 12 shows the experimental setup used
to test the valve closing time. A laser was directed through
the windows on each side of the valve to a detector on the
opposite side of the valve. The center plot of Figure 12 is
an oscilloscope trace showing the closing time (6.3 msec)
when the valve was closed by pushing the close button on the
controller. The bottom plot Of Figure 12 shows the closing
time when the pressure was increased above the set point in

the chamber containing the valve pressure sensor (cold



cathode gauge). The closing time was 6.76 msec. Well over
100 cycles were run with no apparent change in closing time.
Work-has been done on developing a UHV-compatible
tungsten in which porosity is minimized to reduce thermal
desorption gas loads. Measurements of tungsten outgassing
has been done at Berkeley at the aLs. (4) The results from

2 surface

Berkeley were .87 nTorr l/sec/cm2 from an 85 cm
area sample. The sample measured at the APS using a 690 cm?
sample yielded a .22 nTorr 1/sec/cm? thermal desorption.
The desorption for clean baked stainless steel is .01 nTorr
1/sec/cm?. The sample used at the APS was type HD18DS from
Mi-Tech Metals. This sample was first cleaned by scrubbing
with Scotchbrite in trichlor, acetone, and methanol and was
then cleaned ultrasonically in each of these agents for 15
min. This block of tungsten was put in a vacuum system and
pumped to 6 x 10711 Torr with no adverse elements in the
RGA spectra. Comparable samples have also been supplied by

Kulite Corp. Both manufacturers now supply UHV-grade

tungsten.

C

A full-scale prototype windowless front end is being
constructed and assembled in the building 362 high bay where
several vacuum as well as other tests will be conducted.
Planned vacuum tests include (1) determination of front end

roughing time and pump-down time, (2) measurement of the

10



front end vacuum profile, (3) shock-wave delay measurements

3 +
and (4) measurement of the pressure in the upstream front

end area after breaking a downstream window and allowing the

entire safety system (FV,SV, etc.)to shut down the front end

vacuum system.
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1D Front End Vacuum Profile With 100% Beam on FM1
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Windowless 1D Front End Vacuum Profile With 100% of Beam on FM1
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Pressure in Torr
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Pigure 1

Bending Magnet Front End
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. Figure 5
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